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On Maximum-Weight Minimum Spanning Tree Color-Spanning Set
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Abstract

Given n points with m colors in the plane, we aim at
finding m points with distinct color such that their min-
imum spanning tree is maximized. In this paper, we
study a very simple case of this problem, that is, there
are at most two points of each color whose distance is
unit and have the same x− or y− coordinate. We prove
that this problem even under these restrictions is NP-
hard and does not have an FPTAS unless P = NP .
Also, we present an approximation algorithm for an spe-
cial case of this problem.
Keywords: Minimum Spanning Tree, Color-

spanning Set, Uncertainty, NP-hardness, Approxima-
tion Algorithm.

1 Introduction

In addition to the theoretical aspect of multi-colored
problems, they have real world applications such as
modeling uncertain data, e.g., an uncertain point can
be modeled by a discrete set of candidates with a spe-
cial color. In this setting, each of the candidates, but
exactly one of them, may consider as the certain point.
As a result, a family of challenging problems arise aim
at finding a particular structurer. For example, for a
given set of n points with m colors, one can select m
colored points (exactly one point from each colored set)
such that the minimum spanning tree obtained from
them is maximized. We call this problem Max-MST
and show that it is NP-hard even for a simple case, that
is, each colored set contains at most two points with
coordinates p = (x, y) and q = (x, y + 1), or p = (x, y)
and q = (x + 1, y), for some x and y. We prove the
NP-hardness of this simple problem, and present an ap-
proximation algorithm for its general cases when the
instances are well-separated.
Related work. For a set of n points with m

colors, Planar Smallest Perimeter Convex Hull
Color-spanning Set problem (PSPCHCS) is find-
ing m points with different colors which convex hull of
them is minimized. It was proved that the PSPCHCS
problem is NP-complete and two efficient constant fac-
tor approximation algorithms were proposed to solve
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it [7]. Maximum Diameter Color-spanning Set
(MaxDCS) problem is finding m distinct color points
which diameter of them is maximized. An O(n1+ϵ) time
algorithm was proposed to solve it, where ϵ is an arbi-
trary small positive constant [7]. Also, an O(n log n)
time algorithm was presented for MaxDCS [3]. The
Largest Closest Pair Color-spanning Set problem
(LCPCS) also was studied in [7]. This problem is
finding the m different color points such that the dis-
tance between the closest pair of them is maximized.
It is proved that the LCPCS problem is NP-complete
even in one dimension [7]. The Minimum Diameter
Color − spanning Set (MinDCS) problem is find-
ing m points with distinct colors such that the di-
ameter of them is minimized. In [4], it was shown
this problem is NP-hard for any Lp metric, except L1

and L∞ which admit polynomial time algorithms. In
d dimensions, Ghodsi et al. [5] presented a (1 + ϵ)-

approximation algorithm in O(2
1

ϵd .ϵ−2d.n3) time for
the MinDCS problem. Kazemi et al. [9] presented
also a (1 + ϵ)-approximation algorithm and improved
the running time to 2O(λlogλ)×O(nlogn). Further, the
problem of Smallest Color-Spanning Ball (SCSB),
which is finding the smallest ball containing at least
one point of each color, was studied by Khanteimouri et
al. [10]. They presented a 3-approximation and a (1+ϵ)-
approximation algorithm for solving SCSB problem.

Two other problems related to the Minimum Span-
ning Tree (MST) under uncertainty, are Planar
Smallest Minimum Spanning Tree Color spanning
Set (PSMSTCS) and Planar Largest Minimum
Spanning Tree Color-spanning Set (PLMSTCS).
In these problems, the goal is finding m points with dis-
tinct colors such that their MST is minimized in PSM-
STCS problem and is maximized in PLMSTCS prob-
lem. The both problems are NP-complete [7]. The sim-
ilar problem to PSMSTCS is Generalized Minimum
Spanning Tree (GMST ) problem. The GMST prob-
lem has two variations. Let n points are clustered in k
clusters. First variation of GMST, is finding an MST
consisting of at least one point in each cluster while sec-
ond variation is finding exactly one point in each clus-
ter. The first problem was proved NP-complete includ-
ing the case where each cluster contains three points [6].
However, the later one is the same as PSMSTCS prob-
lem. It was proved that this variation of the GMST
problem is NP-complete even if every cluster contains
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two points with equal y coordinate and also did not have
an FPTAS unless P = NP [8].
In addition to the discrete regions for modeling un-

certainty, continuous regions have been also applied for
this purpose. The Minimum Spanning Tree with
Neighborhood (MSTN) problem was introduced in
2007 [13]. In this problem given a set of regions and the
goal is placing a point on each region such that MST ob-
tained from them is minimized. Yang et al. [13] studied
the MSTN problem when the regions of uncertainty are
a set of disks. They presented two approximation algo-
rithms, two lower bounds and a PTAS for this problem.
Löffler and van Kreveld proved that the MSTN problem
is NP-hard where the regions are disks or squares [12].
Dorrigive et al. [2] proved the NP-hardness of the prob-
lem for disjoint disks. They also introduced the Max -
MSTN problem which its goal is placing a point on each
region whose MST is maximized. They proved that the
Max-MSTN problem where neighborhoods are disjoint
disks is also NP-hard, and proposed a parameterized
approximation algorithm for the Max-MSTN problem.

2 NP-hardness of the PLMSTCS-2 problem

We are given a set of n points with m colors and the
goal is selecting m points with distinct colors such that
their MST is maximized. In this section, we study this
problem where there are at most two points with the
same color whose coordinates are p = (x, y) and q =
(x, y+1), or p = (x, y) and q = (x+1, y), for some x or
y. We denote this problem by PLMSTCS-2 and prove
its NP-hardness by a reduction from planar 3SAT.
Planar 3SAT is a special 3SAT variation whose corre-

sponding graph is planar. This graph is constructed as
follows. Correspond to each variable and each clause in
the 3SAT instance, there is a node in this graph –calle
the variable node or clause node. There is also an edge
between a variable node and a clauses node if the corre-
sponding variable appears in the corresponding clause.
Further, all variable nodes are connected by a path. Pre-
cisely, for a 3SAT instance, let C = {c1, c2, ..., cm} be
the set of clauses and V = {v1, v2, ..., vn} be the set
of variables. The corresponding graph G = (U,E) is
constructed as follows:

U = C ∪ V, (1)

and
E = E1 ∪ E2, (2)

where E1 and E2 are:

E1 = {(ci, vj) | vj ∈ ci or vj ∈ ci} (3)

and

E2 = {(vj , vj+1) | 1 ≤ j < n} ∪ {(vn, v1)}. (4)

Figure 1: An example of the orthogonally drawing [1]

The set of all edges in E2 is called spinal path [2]. It is
proved that the planar 3SAT problem is NP-hard [11].

Theorem 1 The PLMSTCS-2 problem is NP-hard and
it does not admit an FPTAS unless P = NP .

Proof. We prove this theorem by a reduction from the
planar 3SAT problem. Let ϕ be an instance of the pla-
nar 3SAT problem. We design two types of gadgets
–called variable gadget and clause gadget. We convert
ϕ to an instance of PLMSTCS-2 by replacing the nodes
with these gadgets. Since the number of colors used
in this reduction should be polynomially bounded in
the size of ϕ, we use a special drawing graph, called
Orthogonally Drawing [1], to achieve this bound. In
orthogonally drawing, each node is considered as a box
and each edge is considered as a sequence of vertical and
horizontal line segments. Figure 1 shows an example.

Theorem 2 [1, Theorem 4] Let H be a simple graph
without nodes of degree ≤ 1, where n is the number of
nodes and m is the number of edges. Then H has an
orthogonally drawing in an (m+n

2 × m+n
2 )-grid with one

bend per edge. The box size of each node v is at most
deg(v)

2 × deg(v)
2 . It can be found in O(m) time.

In Theorem 2, deg(v) is the degree of node v. The
bounds are presented in Theorem 2 are established for
planar triconnected graphs [1]. As planar 3SAT graph
is at most triconnected, we can convert it to the orthog-
onally drawing in polynomially time bounded in the size
of ϕ.
Now we explain variable and clause gadgets.

2.1 Variable Gadgets

We design a gadget for each variable of ϕ. This gadget
is constructed by some points with k colors such that
there is exactly two points with the same color. k is an
even number where 4 ≤ k ≤ 6c− 2 and c is the number
of clauses in which variable exists. Suppose that we
construct a gadget for a variable such as xi. We consider
a structure shown in Figure 2. This structure is part of
the variable gadget and we called it StructureA.
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Figure 2: Structure A. The segment between two points
illustrates them have the same color. That means there
is 16 colors in this structure

Lemma 3 The PLMSTCS-2 with k colors for the
structure A admits two optimal solutions with weight of√
2(k − 1) (See Figure 3). Further, the weight of MST

for any other (non-optimal) solution is at least 0.41 less
than the optimal solutions.

Proof : See the Appendix.

Now we should design some points for connection of
spinal path to variable gadgets. These points should be
located such that do not affect on the selection of points
in the optimal solutions. So, we locate these points in
two sides of the gadget such that have equal distance
from the nearest top and bottom points with the same
color. These points are shown in Figure 4. Also, we
should design some points for connection of the variable
gadget to the edges come from the clauses. According
to Lemma 3, there are two optimal solutions for struc-
ture A. One of the optimal solutions leads to select the
solid points and the other one leads to select the hol-
low points. We called these solutions the Solid Solution
and the Hollow Solution, and consider them to be cor-
respond with the variable xi is TRUE and FALSE, re-
spectively. For each clause containing xi, we set a point
at the distance of 2 units to one of the solid points in
the direction of y. Also, for each clause which contains
xi, we set a point at the distance of 2 units to one of
the hollow points in the direction of y. Figure 4 shows
a variable gadget which is correspond with a variable xi

appeared in three clauses such that xi appears in one
clause and xi appears in two clauses.

.

(a) Solid Solution. An
optimal solution of the
PLMSTCS-2 problem for
structure A.

.

(b) Hollow Solution. An
optimal solution of the
PLMSTCS-2 problem for
structure A.

Figure 3: Optimal solutions of the structure A. The
solid and hollow points which is connected to each other
have the same color
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Figure 4: An example of the variable gadget

2.2 Clause Gadgets

A clause gadget is constructed by three sequence of
points in the length of the edges which meet in a point.
Figure 5a illustrates a clause node in the orthogonally
drawing and figure 5b illustrates the clause gadget re-
placed with the clause node shown in Figure 5a.

2.3 Reduction

We designed two gadgets correspond with the variables
and clauses. If they are replaced with the variables and
clauses of the planar 3SAT graph, we have a PLMSTCS-
2 instance. We scale up the orthogonally drawing of
the planar 3SAT graph with a proper constant factor,
e.g., 2, and then replace the graph nodes with the gad-
gets. The graph edges also should be exchange with
a sequence of points which have unit distances along
the edges. Maximum size of the variable gadget is
(4(c−1)+3)×7 which is equal to (4(deg(v)−9))×7 and
it is polynomially bounded in the size of the box in the
orthogonally drawing. Because of the size of orthog-
onally drawing is at most (m+n

2 × m+n
2 ), the number

of fixed points used in this reduction is polynomially
bounded in the size of ϕ.
We convert every Planar 3SAT instance to a

PLMSTCS-2 instance in polynomially time. Now
we show that every PLMSTCS-2 solution determines
whether the planar 3SAT problem has a TRUE assign-
ment or not. We have:

WT = WE +WG. (5)

Where WT is the total weight of the MST in the op-
timal solution of the PLMSTCS-2, WE is the weight of

.

(a) A clause node

.

(b) A clause gadget

Figure 5: Replacing a clause node in the orthogonally
drawing with a clause gadget
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the MST obtained from the fixed points and WG is the
weight of the MST obtained from variable gadgets. The
fixed points which is used in this reduction have a MST
with a unique constant weight, so WE has a constant
value and it is enough to considerWG. If we select either
solid points or hollow points in all the variable gadgets,

WG = (R− n)
√
2 + 2m, (6)

where R is the number of colors, n is the number
of variables and m is the number of clauses. If WG is
equal to equation 6, then each variable gadget connects
to either the clauses in which variable appears or the
clauses in which variable negation appears. This means
there exists a TRUE assignment in the planar 3SAT
problem. If WG is less than the equation 6, there exists
at least one variable that connects to the clause in which
variable appears and a clause in which variable negation
appears. This means does not exist a TRUE assignment
for the corresponding planar 3SAT instance.
Now we show that the PLMSTCS-2 problem does

not admits an FPTAS unless P = NP . Suppose that
there is an FPTAS for the PLMSTCS-2. Consider an
instance of the planar 3SAT problem and construct the
corresponding instance of the PLMSTCS-2 and com-
pute WT . If we set ϵ ≤ 0.41

WT
, using a (1−ϵ)−solution for

the PLMSTCS-2, it is possible to decide whether one
can exist a TRUE assignment for the planar 3SAT or
not. So, PLMSTCS-2 problem does not have an FPTAS
unless P = NP . □

3 Approximation Algorithm

In this section we present a 1
2 -approximation algorithm

for a special case of the PLMSTCS problem. Given n
points with m colors such that the minimum distance
between the points with different colors is twice greater
than that of the maximum distance between the points
with the same color. This means the points of each
color are separated from the points of other colors. Let
denote this restricted problem by well-separated PLM-
STCS problem.
Let ci be the point from color i, whose distance from

the furthest point with color i is minimum. Consider
C = {c1, c2, ..., cm} as a solution for PLMSTCS.

Theorem 4 The solution C = {c1, c2, ..., cm} described
above is a 1

2–approximation solution for PLMSTCS
problem.

Proof. See the Appendix.

4 Conclusion

In this paper we study the problem of Planar
Largest Minimum Spanning Tree Color-spanning

Set (PLMSTCS). We prove that this problem is NP-
hard and dose not have an FPTAS even if there are two
points from each color such that their distance is unit
and have the same horizontal or vertical coordinates.
We guess this variation of the PLMSTCS problem is
the simplest case of this problem which is NP-hard. We
also present a 1

2 -approximation algorithm for an special
case of PLMSTCS that the points with different colors
are well-separable.
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[12] M. Löffler and M. van Kreveld. Largest and small-
est convex hulls for imprecise points. Algorithmica,
56(2):235, 2010.



ICCG 2019, Tehran, February 19, 2019

[13] Y. Yang, M. Lin, J. Xu, and Y. Xie. Minimum span-
ning tree with neighborhoods. In International Con-
ference on Algorithmic Applications in Management,
pages 306–316. Springer, 2007.

Appendix

Lemma 3 The PLMSTCS-2 with k colors for the structure
A admits two optimal solutions with weight of

√
2(k − 1)

(See Figure 3). Further, the weight of MST for any other
(non-optimal) solution is at least 0.41 less than the optimal
solutions.

Proof. In Figures 3a and 3b, two selections of the points
which lead to the optimal solutions are shown. First, we
consider the structure B which is shown in Figure 6a. Con-
sider the symbol U which is equivalent to the selection of the
top point between two same color points, and the symbol D
which is equivalent to the selection of the bottom point be-
tween two same color points.

Consider a sequence of U and D symbols for each selection
of the points for the structure B. We claim that the solution
of the PLMSTCS-2 problem for B is UDUDUD...UD or
DUDUDU...DU sequence which is shown in Figure 6b and
6c. The weight of MST in these solutions is

√
2(p − 1),

where p is the number of colors in B. If we have UU or DD
in the sequence of the optimal solution, the weight of MST
is

√
2(p − 2) + 1 which is

√
2 − 1 less than

√
2(p − 1). So

in the sequence leads to optimal solution we could not have
UU or DD. Now we consider the structure C which is shown
in Figure 7a. Structure C is a part of the structure A and
repeats ⌈ k

6
⌉ times. Structure C has two optimal solutions

can be obtained by verifying all 28 possible solutions. These
two optimal solutions of C are shown in Figures 7b and
7c. Clearly, in all repeats of the structure C in A either
solid points or hollow points are selected, otherwise, in the
solution of PLMSTCS-2 problem for structure B, we have at
least one UU or DD which is contradict with the optimality
of the solution. So, the PLMSTCS-2 problem for structure A
has two optimal solutions which are shown in Figure 3. We
call the optimal solution leads to selection of the solid points
as solid solution and the optimal solution leads to selection
of the hollow points as hollow solution. The weight of the
MST in the solid solution and hollow solution is

√
2(k − 1),

where k is the number of colors. Also, the weight of MST
in other solutions is (

√
2− 1) ≈ 0.41 less than the weight of

the optimal solutions. □

Theorem 4 The solution C = {c1, c2, ..., cm} described
above is a 1

2
–approximation solution for well-separated PLM-

STCS problem.

Proof. We originate three trees Treeopt, Treecenter and
Treem from [2]. Treecenter is an MST obtained from C,

.
(a) Structure B

.(b) The solid optimal so-
lution of the structure B.

.(c) The hollow optimal
solution of the structure
B.

Figure 6: Structure B and its two optimal solution.
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.

(a) Structure C

.

(b) The solid optimal so-
lution of the structure C.

.

(c) The Hollow optimal
solution of the structure
C.

Figure 7: Structure C and it’s two optimal solutions.

Treeopt is an optimal solution of PLMSTCS problem and
Treem is a spanning tree whose nodes are vertices of the
Treeopt and it’s topology is similar to the topology of the
Treecenter.

Since Treeopt and Treem have the same vertices and
Treeopt is an MST of them, we have:

Weight(Treeopt) ≤ Weight(Treem). (7)

Since, any edge of Treecenter connects two centers and
Treem and Treecenter have the same topology,

Weight(Treem) ≤ 2Weight(Treecenter). (8)

According to inequalities 7 and 8 :

Weight(Treeopt) ≤ 2Weight(Treecenter). (9)

Consequently, C is a 1
2

approximation ratio for the well-
separated PLMSTCS problem. □


